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Multiple Comparisons in Studies of Gene x Gene
and Gene x Environment Interaction

To the Editor:
(dlogh,/dlog W,) |, = 0

Complex diseases are (by definition) influenced by
multiple genes, environmental factors, and their inter-
actions. There is currently a strong interest in studies
testing for association between combinations of these
factors and disease, in part because genes that affect the
risk of disease only in the presence of another genetic
variant or particular environment may not be detected
in a marginal (gene-by-gene) analysis (Culverhouse et al.
2002). Such studies raise the problem of multiple com-
parisons. Even when a small number of candidate genes
and environmental factors is examined, a large number
of possible interactions may need to be tested, as illus-

a
o
o _
Ire)
~
=
o
S
I
S o
o O
S ®
e <
>< —
s s
c S -
S ©
8 -
o
S 4
)
o

0.0 0.2 04 0.6 08 1.0
Py

Figure 1

trated by a recent article in The American Journal of
Human Genetics (Bugawan et al. 2003).

Bugawan et al. (2003) investigated potential interac-
tion between the IL4R locus and five tightly linked SNPs
in the IL4 and IL13 loci on chromosome 3, through use
of a sample of 90 patients with type I diabetes and 94
population-based controls. They independently tested
each of the chromosome 5 SNPs for interaction with
IL4R, through use of logistic regression (cf. their table
7), and corrected for multiple comparisons through use
of a permutation procedure. They concluded that there
is statistically significant evidence for an epistatic inter-
action between at least one of the chromosome 5 SNPs
and the IL4R locus. However, the authors’ permutation
procedure does not have the desired statistical prop-
erty—that is, it rejects the global null hypothesis of no
interaction too often when none of the estimated inter-
action parameters differ from their null value. In this
letter, I discuss why their procedure fails, present several
alternatives, and compare the performance of these al-
ternatives in a small simulation study.
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Density of global p values for the multiple-comparisons procedure used by Bugawan et al. (2003) under the global null hypothesis

for two independent tests (2) and three independent tests (). In panel a, P, = Fy(P,),P ), where P, and P, are independently uniform on (0,1)
and F, is the cumulative distribution function of the order statistics, as discussed in the text. In panel b, P, = Fy(P,,P,P3), where P, P,, and
P, are independently uniform on (0,1). Densities are estimated from 10,000 Monte Carlo replicates.

582



Letters to the Editor

The procedure presented by Bugawan et al. (2003)
amounts to plugging the order statistics for the observed
p values, P, ...,ps), into their joint cumulative distri-
bution function under the null: p = Fy(p,),....ps) =
Pr(Py, < puy--- P =< D5)- (Here, italicized uppercase
letters refer to random variables, and lowercase letters
refer to observed values of the corresponding variables.
This differs from the notation in the Bugawan et al.
[2003] article.) The authors estimate F, by permuting
case-control labels 200 times and calculating the ordered
p values for each permutation.

A simple example shows that this approach is inap-
propriate. Consider the p values from two independent
tests, P, and P,. If we assume a large enough sample
size, P, and P, are independently uniform on (0,1) under
the null, and, hence, the cumulative distribution func-
tion for the associated order statistics, Fo(p,00), is
P(2pu) — Py (Bickel and Doksum 1977). The distri-
bution of P = F(P,,P,) under the global null is shown
in figure 1la. P does not have a uniform distribution
under the null, as we expect for a p value. In this case,
a test that rejects the global null hypothesis that both
tests are null when P <.05 would have a type I error
rate between 10% and 15%. As shown in figure 1b, the
magnitude of the type I error rate increases as the num-
ber of independent tests increases.

There are several alternative, theoretically justified
and simple procedures that correct for multiple com-
parisons, besides the notoriously conservative Bonfer-
roni correction. Simes’s test (Simes 1986), for example,
controls the overall significance level (also known as the
“familywise error rate”) when the tests are independent
or exhibit a special type of dependence (Sarkar 1998).
Simes’s test rejects the global null hypothesis that all K
test-specific null hypotheses are true if p, < ak/K for
any k in 1,...,K. Simulation results reported in table 1
suggest that Simes’s test has the appropriate false-posi-
tive rate, even when the tests are correlated.

Other approaches with particular appeal in the con-
text of multiple-gene and multiple-environmental-factor
studies aim to control the false-discovery rate—that is,
the expected proportion of rejected null hypotheses that
are falsely rejected. This approach is particularly useful
when a portion of the null hypotheses can be assumed
false, as in microarray studies. Devlin et al. (2003) re-
cently proposed a variant of the Benjamini and Hoch-
berg (1995) step-up procedure that controls the false-
discovery rate when testing a large number of possible
gene x gene interactions in multilocus association stud-
ies. The Benjamini and Hochberg procedure is related
to Simes’s test; setting k* = maxk such that p(k) <
ak/K, it rejects all k* null hypotheses corresponding to
Pay -+ sPur- In fact, the Benjamini and Hochberg pro-
cedure reduces to Simes’s test when all null hypotheses
are true (Benjamini and Yekutieli 2001).
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Table 1

Observed False-Positive Rates (False-Discovery Rates) for
Procedures with Nominal 5% Rates in the Context of Testing Five
Possible Gene x Gene Interactions, Calculated from 500
Simulated Data Sets

FALSE-POSITIVE RATE UNDER MODEL

PROCEDURE? Null I Null II

CDF 194 214

Simes .032 .036

RSimes .048 .058

FALSE-DISCOVERY RATE UNDER MODEL

Null I Null II

BHD .014 .014

DRW .050 .070

NOTE.—Six SNPs were simulated for 100 cases and 100 controls.
The first SNP had mutant-allele frequency of .2; the other five SNPs
were generated independently of the first by sampling five-SNP hap-
lotypes with frequencies similar to those given in table 5 of Bugawan
et al. (2003). Under model Null I, none of the SNPs were associated
with disease. Under Null II, each mutant allele for the first SNP doubles
disease risk, but the remaining five SNPs are not associated with dis-
ease. The multiple-comparisons procedures are applied to the p values
from five Wald tests for interaction based on the logistic model
Pr (disease) = o + B,SNP, + BSNP; + 3, SNP;SNP,, analogous to that
of Bugawan et al. (2003).

* “CDF” denotes the cumulative distribution function procedure
used by Bugawan et al. (2003); “Simes” is the standard Simes’s test;
“RSimes” is Simes’s test applied to p values calculated by comparing
the observed p values to the distribution of p values generated by
permuting the outcome variable 200 times; “BHD” is the Benjamini
and Hochberg step-up procedure corrected for general dependency
(Benjamini and Yekutieli 2001) (the usual step-up procedure is iden-
tical to Simes’s test in this case); and “DRW?” is the related procedure
proposed by Devlin et al. (2003).

int

Devlin et al.’s (2003) proof for the validity of their
false-discovery-rate procedure requires that the analyzed
genes be statistically independent. This is not the case
for the IL4 and IL13 SNPs studied by Bugawan et al.
(2003), but the simulation results in table 1 suggest that
Devlin et al.’s (2003) procedure controls the false-dis-
covery rate even when the analyzed genes are correlated.

The p values reported in table 7 of Bugawan et al.
(2003) do not lead to any significant results at the .05
level when any of the alternative procedures discussed
here are used.

Clearly, effective methods are needed for adjusting for
multiple comparisons when testing for association be-
tween multiple factors and complex disease. On the one
hand, blithely reporting any results marginally “sig-
nificant” at the .05 level or relying on outdated and
ill-performing stepwise model-building procedures (see,
e.g., Burnham and Anderson [2002] and Devlin et al.
[2003]) will lead to spurious results, expensive follow-
up studies with little chance of replication, and confu-
sion. On the other hand, overly conservative procedures
will create missed opportunities. Although the proce-
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dures discussed here are known to control the familywise
error rate or false-discovery rate in particular situations
(e.g., independent covariates), their performance in more
general situations needs further investigation.

PETER KRAFT
Departments of Epidemiology and Biostatistics
Harvard School of Public Health
Boston
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Reply to Kraft

To the Editor:

Our study (Bugawan et al. 2003) reported a negative
association of a specific IL4-524 haplotype with type 1
diabetes (T1D), consistent with a previous report (Mirel

et al. 2002), and presented evidence for a genetic inter-
action between 11.4-524 and IL4R SNPs. To test the lat-
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ter, we computed relevant P values by permuting mul-
tilocus genotypes separately in case and control groups.

The criticism raised by Kraft (2004 [in this issue]) is
not directed at our implementation of permutation test-
ing, per se, but at permutation testing in general. His
argument is that permutation testing does not properly
account for multiple comparisons, resulting in an in-
crease in false claims of significance, or type I familywise
error (FWE). In the place of permutation testing, Kraft
advocates the use of the Simes method—an elaboration
of the classic Bonferroni procedure. In response, we wish
to show that permutation testing can be used to obtain
a desired false-positive error rate (as, indeed, can be dem-
onstrated using Kraft’s example) and, moreover, that
such an approach has the added advantage of providing
additional protection against false claims of nonsignif-
icance, or type II error.

It should be noted that permutation methods are well
established as a robust approach for obtaining overall
significance levels while minimizing type II error (e.g.,
Good 1994; Doerge and Churchill 1996; Lynch and
Walsh 1998), that such methods are extensible to mul-
tiple-testing scenarios (Westfall and Young 1993), and
that examples of their application to human genetics are
not uncommon (e.g., Lewis et al. 2003). However, as
with any statistical method, the validity is dependent on
correct application. Kraft provides an analysis of the
permutation testing by discussing the distribution of two
P values obtained from hypothetically permuted distri-
butions (i.e., independent and uniformly distributed un-
der the null hypothesis). The joint cumulative distribu-
tion function (CDF) for these two P values is given as
F(P,,P,) = P,(2P, — P), where P, and P, are, re-
spectively, the first- and second-ordered P values. As
such, Kraft notes that the Pr (P < .05) for this joint dis-
tribution is ~0.1, indicating that we would expect to see
the smaller P value, or P ;, < .05, about 10% of the time.
Kraft’s argument, therefore, is that for independent tests,
use of a critical value of .05 leads to a type I error rate
of 10%.

In fact, the proper approach for permutation testing—
adjusted or unadjusted for multiple comparisons—is to
find the critical value corresponding to the desired type
I error rate. Specifically, if we consider the simulations
presented by Kraft as equivalent to the result of a per-
mutation test, we would seek the value of x in the per-
muted distribution for which Pr (P < x) is actually <«
and would use that value, not the .05 value as Kraft
appears to suggest. For P, this critical value would be
.0253, as can be shown either by simulation or by solv-
ing Kraft’s joint CDF for o = 0.05, given P, = 1 (in
effect, solving the marginal CDF for P,;)). It is interesting
to note that the first P value that Kraft gives (.10) cor-
responds to the Sidak multiple comparison—-adjusted P
value for observed oo = 0.05 and k& = 2 tests, whereas
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